
Building Nuclide @
Facebook
黄力菲 谭映辉
Engineering Manager Software Engineer

黄力菲 Engineering Manager

l  黄力菲(Leo Huang)：现在Facebook任

Engineering Manager。2010年至今在Facebook

带领团队开发了开源开发工具Nuclide 以及代码

审核工具Phabricator。目前主管产品性能测试工

具和平台的开发。2002-2010在微软从事Visual

Studio SQL Server引擎和智能个人设备的开发

工作。毕业于清华大学自动化系 在美国俄亥俄

州立大学计算机系获硕士学位。

谭映辉 Software Engineer

l  谭映辉(Jeffrey Tan)：Facebook开发工具资深

专家。2009-2015 就职于美国Microsoft总部从事

Visual Studio Debugger的开发工作。2015-2017

就职于Facebook 从事代码审核工具Phabricator

的开发 后加入开源开发工具Nuclide的开发 主

管编译器和调试器相关领域。毕业于复旦大学数

学系。

•  Introduction and History
•  Architecture

•  Innovations

•  Remote Development

Introduction

One IDE to Rule Them All

•  Platforms

•  iOS, Android, Web, React Native

•  Supported Languages

•  PHP/Hack, JS/Flow, Objective-C, C++, Python,
OCaml, GraphQL

Features
•  OSS

•  Remote development

•  Source control integration (Git, Mercurial)

•  Buck integration

•  Debugger

•  More

History – Before Nuclide
•  2013-2014 Web IDE

•  Target: web development

•  Zero install

•  Cross-platform

•  Web for web

•  Remote development as the first citizen

•  Cons: security was a challenge.

History – Birth of Nuclide

•  In 2014-2015, Facebook became a mobile first
company.

•  Intellij and Xcode did not scale for us.

History - Nuclide
•  Nuclide! Desktop IDE based on Atom

•  OSS

•  Familiar web technology and fast development cycle

•  Growing package ecosystem

•  Extensibility as first citizen

•  Decision: merge the force, build feature parity on Nuclide

Development of Nuclide
•  Core teams

•  MPK: UI, Android

•  Seattle: debugger, languages, source control

•  Contributors

•  Hack team, Flow team, GraphQL, etc.

•  Anybody can contribute to Nuclide, even an intern.

Why Nuclide for Facebook

•  What’s special about Facebook?

•  Remote development

•  Multiple languages/projects in daily
development

Why Nuclide for Facebook

•  One IDE to rule them all.

•  Open platform.

•  Tailored for Facebook. Deep integration with
Facebook tool chain.

•  Remote development.

•  Introduction and History

•  Architecture
•  Innovations

•  Remote Development

Architecture
•  Design Principles

•  Electron vs Atom vs Nuclide

•  Language services

•  Debugger

•  Nuclide Remoting Framework

•  Technologies Stack(Skim)

Design Principles
•  Cross platform

•  Remote development

•  Extensibility as first citizen

•  Repo vs Project: impacts search, scalability
from beginning

Architecture Overview
Nuclide

Atom package providing IDE
features

Atom

Extensible editor based on
Electron

Electron

Framework for building native
application with web
technologies

Language Services
Features

o  AutoCompletion, Go To Definition, Type Hint, Type Coverage.
o  Context View, Outline view
o  Type Checking Diagnostics
o  On fly type checking without saving.

Support Languages
o  Php/Hack
o  C++
o  JS/Flow
o  Python
o  Others(Swift, GraphQL, Ocaml etc)

Different from compiler
o  Compiler normally run once against static files on disk
o  Language service does type checking frequently against dynamic file content in

memory buffer(editor)
o  Challenge: including the entire file contents in each language service request would

be extremely inefficient
Extensibility

o  Every easy to plugin a new language(One intern adds the Python language support in
2 months)

o  VSCode protocol compatible plugin

Autocomplete

Diagnostics

Type Hint

Context View

Language Service Architecture

Debugger
Support Languages/Platforms

o  Php/Hack
o  C++
o  Node JS
o  React Native

Features
o  General: launch/attach, stepping, callstack, threads, watch/locals/datatip,

REPL console, single thread stepping, pause on exception etc
o  HHVM/PHP: function evaluation triggering breakpoint
o  C++: LLDB console-based debugger commands

Extensibility
o  First class API for customizing launch/attach UI
o  VSCode Debugger Compatible

C++/Native Debugger

Function Evaluation Triggering
breakpoint(HHVM-only) – Part1

Function Evaluation Triggering
breakpoint(HHVM-only) – Part2

Function Evaluation Triggering
breakpoint(HHVM-only) – Part3

Runtime Architecture

Nuclide Remoting Framework
•  RPC system enables transparently call a function/method

either locally or remotely on another machine.
•  Enable code reuse

o  One package implementation can be used/called in both
local and remote scenarios without written twice.

•  Interface definition language(IDL)
o  Written in JS language
o  Combine of ES6 module exports and Flow type definitions
o  Uses Babylon parser to parse it

•  Features/Components
•  TypeRegistry: marshal/unmarshal runtime objects/data into

transportable JSON format data.
•  ObjectRegistry: call by reference vs call by value.
•  Transportation neutral: customizable transportation layer(e.g.

websocket, stdin/stdout, socket, shared memory etc)

RPC Architecture

Technologies Stack

Node.js

ES6/ES7

Flow

Reactive Programming

React JS + Flux

JavaScript ES6/ES7
Babel transpiler
Scoping
•  let and const
•  block scope functions
Template string

const customer = { name: "Foo" };
const message = `Hello ${customer.name}`;

Export and Import
Destruction using pattern matching
Class definition and inheritance
Async programming
•  await and promise

Flow
A JavaScript type checker designed by Facebook.
•  Flow checks your code for errors through static type annotations
•  Type Inference using data flow analysis
•  Gradual adoption for legacy codebase
•  First class support in Nuclide

•  Dogfooding everyday by Nuclide team
•  Realtime feedback

Reactive Programming

Benefits
•  Functional less mutation,

avoid stateful program
•  Less code
•  Async error handling.

RxJS is a library for reactive programming using Observables, to
make it easier to compose asynchronous or callback-based code. !

React JS + Flux

React JS
•  A JavaScript library for building user interface
•  Declarative
•  Component-Based

Flux

•  Introduction and History

•  Architecture

•  Innovations
•  Remote Development

Innovations in Nuclide
•  Remote development

•  Quick Open

•  Diff View

•  Phabricator Integration

•  Working Sets

•  Etc.

Quick Open

Diff View
•  Diff View

•  Editable, not read only

•  Easy to locate changes

•  Old code to provide context

•  Only available on Mercurial

Without Diff View

Diff View

Phabricator

•  A code collaboration tool that was initially built in
Facebook.

•  It includes features such as code review and
repository browsing

•  Open sourced in 2010.

Phabricator

Phabricator Integration
•  Phabricator Integration

•  Review comments inline where the code is

•  Navigation and check progress

•  Reply to comments

•  Today only available internally

Phabricator Integration

Phabricator Integration

Phabricator Integration

•  Introduction and History

•  Architecture

•  Innovations

•  Remote Development

Advantages of Remote
Development

•  Thin client

•  Heavy computation power

•  No deployment

•  Resource sharing

•  Mobility

•  Secure

Challenges in Remote
Development

•  Disconnection

•  Latency, latency, latency

•  Security vs user experience.

•  Offline mode

The Next Step of Remote
Development

On Demand Nuclide

On Demand Nuclide

Why On Demand Nuclide

•  Perfect for small code changes, big repo

•  Multi-tasking

•  No server and repo management

•  Share diffs easily

On Demand Nuclide

How Do I Get Started

•  https://nuclide.io/

